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Abstract-This study examines the influence of insoluble surfactant on the steady thermocapiliary flow in 
a rectangular cavity with an upper, deformable free surface and differentially heated side walls. The 
numerical solutions are obtained with a finite difference method, together with a boundary-fitted curvilinear 
coordinate system. The results show that the thermocapillary convection can be stabilized by the addition 
of an insoluble surfactant. Furthermore, as the concentration of the surfactant increases (higher elasticity 
number), oscillatory instability caused by that surfactant may occur when the slope of the surface tension 
becomes negative. For higher Peclet numbers, the concentration boundary is formed near the cold wall, 
and the clean surface appears in the region near the hot wall. Oscilhrory flow may atso be induced by a 

high local surfactant concentration that is created by a concentration boundary. 

1. INTRODUCTION 

1~ IS WELL known that bulk fluid motions may be 
induced by variations in surface tension at the inter- 
face between two fluids. Such surface tension varia- 
tions may be caused by non-uniform distributions of 
surface temperature or concentration. Fluid motions 
due to temperature gradients are called ‘thermo- 
capillary convention’. In recent years, interest in ther- 
mocapillary flows has arisen in connection with the 
production of high-quality materials. The importance 
of thermocapillary convection has been discussed by 
Ostrach [f]. 

The influence of surface contamination on ther- 
mocapillary convection is the subject of considerable 
study. Knowledge of this effect is important in prac- 
tical situations, as the characteristics of resolidified 
material in a material process are usually influenced 
by the transport behavior of heat, momentum, and 
mass during the melting. It is difficult to analyze a 
problem that involves the heat, momentum, and mass 
transfer with an unknown gas-liquid interface. 
Homsy and Meiburg [2] have extended the asymptotic 
analysis of Shen and Davis [3] in studying the influ- 
ence of surface contamination in a rectangular cavity. 
They simplified ‘the mass transfer problem by 
assuming an insoluble surfactant absorbed at the gas- 
liquid interface. Two dimensionless parameters were 
introduced: a surface Peclet number Ye, which rep- 
resents the ratio of the insoluble surfactant convection 
to diffusion, and an elasticity number E, which indi- 
cates the ratio of the variation in surface tension gen- 
crated by the insoluble surfactant to that induced 
by the temperature difference. They showed that the 
thermocapillary convection strength is suppressed by 

the addition of an insoluble surfactant, and for E CC 1 
and Pe >> 1, sharp gradients in surfactant con- 
centrations form near rhe cold wall. Carpenter and 
I iomsy [4] considered the thermocapillary flow in a 
two-dimensional slot with the effect of a partially con- 
taminated interface. They assumed that the free sur- 
face was non-deformable, and found that for Pe >> I 

the region of surface stagnation depended on elasticity 
number E. The results of refs. 12-41 are valid for slow 
fluid motions in a shallow, two-dimensional cavity, 
but because the motion of flow occurring in the 
material process is very vigorous, an analysis without 
consideration of the effects of strong convection may 
be physically unrealistic. As mentioned by Berg and 
Acrivos [5], the convective instability can be stabilized 
by a surfactant. Therefore it is of interest to study 
the effect of surfactants on strong thermocapillary 
convection. 

In order to gain further understanding of the effect 
of surface contamination on thermocapillary con- 
vection in a rectangular cavity, we have ~rformed 
a series of numerical computations. The numerical 
technique, which is an extended version of that used 
previously by Chen et al. [6, 71, has been used to solve 
the non-linear governing equations. The results of 
these computations will be compared with previous 
asymptotic results. 

2. MATHEMATICAL FORMULATION 

The physical model consists of a rectangular cavity 
of height Hand length L containing a Newtonian fluid 
of constant density p, dynamic viscosity p, kinematic 
viscosity v, thermal conductivity k, and thermal diffu- 
sivity ~1, as shown in Fig. 1. The temperatures at x’ = 0 
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NOMENCLATURE 

A aspect ratio u dimensionless horizontal velocity 
c dimensionless surface concentration D dimensionless vertical velocity 
c’ surface concentration .rc dimensionless horizontal coordinate 

c0 average surface concentration .Y‘ horizontal coordinate 
c 
& 

specific heat Y dimensionless vertical coordinate 
capillary number 1 9’ vertical coordinate. 

D surface diffusion coefficient 
E elasticity number Greek symbols 
A location of the free surface Ix thermal diffusivity 
H height of the cavity ?ic surface concentration coefficient 
L length of the cavity YT surface tension temperature coefficient 
Ma Marangoni number lJ dynamic viscosity 

P dimensionless pressure V kinematic viscosity 

P’ pressure P density 
Pl? Peclet number d surface tension 
Pr Prandtl number a,, mean value of free surface 
RI? Reynolds number t/J stream function 
T dimensionless temperature 0) vorticity. 
T temperature 

T, temperature at x’ = L Subscripts 

r, temperature at .Y’ = 0 x, J derivative with respect to .Y, _I’. 

and x’ = L are T,, and T,, respectively. The bottom 
surface is thermally insulated, while the top free sur- 
face is cooled by heat transfer to the gas. We assume 
that the free surface is contaminated by an insoluble 
surfactant. The surface tension is considered as a 
monotonically decreasing function of temperature 
and local surface concentration of the surfactant : 

CJ = ao-_i’T(T’-To)-i’c(~‘-~n) (1) 

where a0 is the mean surface tension at reference tem- 
perature To = (l;l+ TJj2 and average surface con- 
centration c,, and the constants yr and yc represent 
the rate of surface tension change with respect to 
temperature and concentration, respectively. 

Following Chen et al. [6], we introduce the fol- 
lowing non-dimensional variables : 

x = .u*ju, y = jqfi, II = ~f’i~AT/~)~ 

v = v’/&AT’/& p = p’/(y,AT/H), h = h’/H, 

T = (T’ - T,,)/AT, c = L/c,, (2) 

FIG. 1. Schematic diagram of the physical system. 

where AT = T,-- 7,. The dimensionless governing 
equations for the steady two-dimensional motion of 
the liquid are the following : 

u,+cl. = 0 (34 

Re(uu, + m,,) = -py + u,, + urv (3b) 

Re(uc, +q) = -p, +v ,,,, +qJ (3c) 

Mu(uT;+sT,.) = T,+ T,,p. (34 

Here, the stream function 11, is given by : 

u = *r, L!Z .-f/j (4) 

and the vorticity is defined as : 

Q = v,-u,.. (9 

The two dimensionless parameters which appear in 
equations (3) are : 

Reynolds number, Re = yrATH/pv, 

Marangoni number, Ma = RePr = yrATH/px, 

where Pr is the Prandtl number, v/r. 
Eliminating the pressure from equation (3), we 

obtain : 

fWll/,.~.< - ti,~,.) = ~0v.r +ov, (W 

~4~CI,~T-~.~T,.) = TV,+ T,., (6b) 

- w = ~.V.~ + $,,. (64 

The appropriate boundary conditions are as follows : 

11/= r,=o, w= -cr/_; y=o (7a-c) 

* = 0, 0J = -$rV> T=1/2; x=0 @a-c) 
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Ic/ = 0, w = -- *,> T= -l/2; x= l/A (9a-c) and Tare solved iteratively using the successive-line- 

* = 0, 
overrelaxation (SLOR) method. The new solutions 

for $ and Tare used to correct the initial guesses for $ 

-P+2(1+h,Z)~'[-~,-Il/,h,+h,(~,h,+~,,)l = and T, and the procedure is repeated until the relative 

Ca~‘h,,Y(l+h~)-“2(l -CaT-ECu(c-I)), 
error of two subsequent computations is within a 
specified limit, generally taken as 10-4. The surfactant 

(I-h:)o = (1 +h,Z)‘~2(T,+h,Ty+Ec,) equation (1Oe) is solved using the shooting method. 

-Wdl -h,Z)-4hd,, 
Then the normal-stress condition (lob) is checked. If 
that condition is not satisfied, the gas-liquid interface 

(I-h,Z)-‘(T,,-7.,/r,) =BI’(T+Ax-l/2), is modified to reduce the difference ; the complete 

c,,-h,h,,(l -h,2)- ‘c, = APe(1 +h,2) 
discussion of the search procedure for the new inter- 
face shape is described in detail in ref. [6] and is 

x [($,,c)~-$,ch,h,,(l -h:))‘]; y = h(x). (1Oa-e) therefore not repeated here. With a new interface 

The boundary conditions contain five dimensionless 
shape, we repeat the solution procedure discussed 

parameters : aspect ratio A = H/L, capillary number 
above until all equations and boundary conditions are 

Ca = yTAT/cr,, elasticity number E = c,y,/(y,AT), 
satisfied. 

surface Peclet number Pe = y,ATL/(pD) and Biot 3. RESULTS AND DISCUSSION 
number Bi = hH/k, where D is the surface diffusion 

coefficient and his the surface heat transfer coefficient. The numerical computations described in the pre- 

Equation (10a) expresses the kinematic condition on vious section were done on the National Central Uni- 

the free surface. Equations (lob)-( 1 Od) represent versity VAX 8650 computer using double-precision 

the normal and shear-stress balances and the thermal arithmetic. Computations were performed for cases 

condition. Following Levich [8], the convection of in which the aspect ratio was 0.2, the Prandtl number 

an insoluble surfactant along the free surface is was 10, and the Biot number was 1. The total number 

expressed by equation (1 Oe). of mesh points was chosen from 41 x 41 to 201 x 41, 

Since the liquid volume and the total surface con- depending on the Marangoni number Ma ; 41 x 41 

centration remain constant : for Mu = 10, 81 x41 for Ma = 500, and 201 x41 for 
Ma = 5000. 

l/A 

h(x) dx = f (114 
The influences of the elasticity and Peclet numbers 

on the surface deformation have been considered. 

s I/A 

cl 
c(x)dx=f. 

Figure 2 shows the free-surface shape for Mu = 10, 

(llb) 
Pe = 100, and Cu = 0.1 with different E, while Fig. 3 

The contact line conditions are restricted to the case 
of the liquid sticking to the sharp edge at the solid end 
walls, 

h(0) = h(l/A) = 1, (12) 

and the concentration gradient is assumed to be zero 
at the solid end walls, 

c,(O) = c,(l/A) = 0. (13) 

The finite difference scheme originally developed by 
“.“b. 

Chen et al. [6] to study thermocapillary convection in 
X 

a rectangular cavity has been modified to solve system 
FIG. 2. The interface shape for Mu = 10, Pe = 100, and 

(6) with conditions (7)-(13). The dtscrete form of 
Cu = 0.1 with different E. 

the system is constructed using second-order central 
differencing. The calculations are initiated by assign- 
ing an initial shape to the gas-liquid interface. A boun- 

dary-fitted curvilinear coordinate system [9] has been 
generated that has coordinate lines that coincide with 
the current boundary. Grid-stretching transformation 
has been employed to provide good resolution near 
the gas-liquid interface. Initial guesses for $, w, and 
T over the entire computation domain were chosen. 
The difference equation for w is solved using these o.ss! , , , , , , , , . 

Cl 1 2 3 4 5 

initial guesses to form the non-linear term in equation X 

(6a) and boundary conditions (7)-(9) and (10~). After FIG. 3. The interface shape for Ma = 10, Pe = 0.1, and 
the new o is obtained, the difference equations for ti Ca = 0.1 with dlflerent Pe. 
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FIG. 4. The distribution of surface velocity for Ma = 500, 
Pe = 1000, and Cu = 0.02 with different E. 

illustrates the interface shape for Ma = 10, E = 0. I, some critical Ma. As mentioned by Zebib et al. [12], 
and Ca = 0.1 with different Pe. The amount of surface the peak velocity near the cold region is the major 

deflection decreases as E and Pe increase. The surface cause for the instability of thermocapillary convec- 

deflections for small parameters are in qualitative and tion. One may conjecture that the thermocapillary 
quantitative agreement with those of Homsy and flow is stabilized by the addition of an absolute sur- 

Meiburg [2]. factant. 
Figures 4 and 5 illustrates the effect of the elasticity 

and Peclet numbers on the surface velocity. It is clear 
that the present results are consistant with those of 
the asymptotic results [2] in that the surface velocity 
decreases as the elasticity and Peclet numbers increase. 
The influences of E and PE are more significant near 
the cold region. In the cavity, the flow motion induced 
by the temperature gradient is clockwise, where the 
fluid is driven from the hot side to the cold side near 
the gas-liquid interface and moves back near the bot- 

tom wall [6]. The surfactant concentration near the 
cold side is much richer than it is near the hot side 
because the surfactant has shifted to the cold side due 
to the clockwise flow motion. Hence, the magnitude 

of surface velocity is more significantly reduced by the 
surfactant near the cold region. For higher E, the 

influence of the surfactant on the surface tension is 
more significant than the temperature difference. 
Also. the distribution of surfactant is more non-uni- 
form for higher PC (Fig. 8). These are the reasons for 

the decrease of surface velocity near the cold wall for 
higher E and Pe. Based on the stability analysis of 

Smith and Davis [lo, 111, it is to be expected that 
unsteady thermocapillary motions will occur above 

Figure 6 shows the influence of E on the surfactant 
concentration. For smaller E, the surface tension 

gradient is mainly induced by the temperature gradi- 
ent. The high local concentration is formed near the 
cold region resulting from the convection effect due 
to thermocapillary flow motion. The local surface ten- 
sion strength decreases as the concentration of insol- 
uble surfactant increases because the shear stress 
caused by the concentration is in opposition to the 
thermocapillary stress. Therefore, increasing E results 
in a reduction of the convection effect due to ther- 
mocapillary flow motion. This is the reason why the 

surfactant concentration is more uniform for higher 
E. Figure 7 illustrates the distribution of surface ten- 
sion gradient for MU = 10, Pe = 100, and Cu = 0.1 

with different E. From Fig. 5, it is clear that the surface 
tension gradient decreases with increasing E. 
especially for the region near the cold wall. For 
E = 0.1333, the surface tension gradient at x = 4.5 is 
almost zero. When E > 0.14, it is obvious that a ncga- 

tive surface tension gradient may appear. In our com- 
putations, a convergent solution cannot be obtained 
beyond this value, possibly because the surface ten- 

sion gradient near the cold wall oscillates from the 

FIG. 5. The distribution of surface. velocity for Ma = 500, 
E = 0.01, and Ca = 0.02 with different Pe. 

Fro. 6. The distribution of surfactant concentration for 
Ma = 10, Pe = 100, and Crr = 0.1 with different E. 

X 
FIG. 7. The distribution of surface tension gradient for 

Ma = 10, Pe = 100, and Ca = 0.1 with different E. 
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negative value to the positive value. When the negative 
surface tension gradient occurs, a stagnant point is 
formed at the free surface and the flow motion in 
the cavity is separated into two regions : a clockwise 
motion near the hot wall and an anti-clockwise 
motion near the cold wall. The negative surface ten- 
sion gradient will change to the positive value because 
the anti-clockwise flow motion will drive the insoluble 
surfactant from the low temperature region to the 
high temperature region. The positive surface tension 
gradient will switch back to the negative value due to 
the clockwise flow motion. Therefore, an oscillatory 
motion may be established when E is greater than 
this critical value. This implies that the zero surface 
tension gradient could be the criterion for the onset 
of the oscillatory instability caused by the insoluble 
surfactant. Of course, this must be verified by further 
experiments and stability studies. The critical elas- 
ticity number decreases with increasing Ma, Pe and 
Cu. For Ma = 5000 and Pe = 1000, the critical elas- 
ticity number is around 0.006. 

Figure 8 shows the effect of Pe on the surface con- 
centration. From Fig. 8, we can see that the surface 
concentration is nearly constant for Pe = 10, and the 
concentration boundary layer is formed near the cold 
wall with further increases in Pe. When Pe exceeds a 
certain critical value, the clean surface appears in the 
region near the hot wall. The extent of the clean sur- 
face increases with continuous increases in Pe. We 
choose to define the clean length x, as the length of 
the surface where c(x) < 0.01. Figure 9 demonstrates 
that for a fixed Pe, x, increases with increasing Re, 

and for a fixed Ma, x, increases exponentially for 
smaller Pe and asymptotically for higher Pe. In Fig. 
9, a convergent solution will not be obtained when 
x, > 4.1 for Ma = 100 and x, > 4.25 for Ma = 5000. 
This may be caused by the appearance of a negative 
surface tension gradient resulting from a high local 
surfactant concentration near the cold region. There- 
fore, the transient flow motion may be generated by 
the strong surfactant convection, 

4. CONCLUSION 

Numerical computations have been performed to 
study the influence of an insoluble surfactant on the 

FIG. 8. The distribution of surface concentration for 
MU = 10, E = 0.01, and Ca = 0.1 with different Pe. 

Ps 

FIG. 9. Clean length X, vs Pe for E = 0.005 and Cu = 0.001 
with Re = 10 and 500. 

thermocapillary convection in a rectangular cavity. 
The results show that the thermocapillary flow may 
be stabilized by the addition of an insoluble 
surfactant. The strength of the thermocapillary flow 
is reduced with increasing E or Pe. With further 
increases in E or Pe, oscillatory flow may occur due to 
the appearance of a negative surface tension gradient 
caused by the insoluble surfactant. The magnitude of 
the critical elasticity number decreases with increasing 
Ma, Pe and Ca. The clean surface forms the region 
near the hot wall when Pe exceeds a certain critical 
value, and the region of clean surface increases when 
Re increases. 
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CONVECTION THERMOCAPILLAIRE DANS UNE CAVITE RECTANGULAIRE SOUS 
L’INFLUENCE DE LA CONTAMINATION DE LA SURFACE 

R&sum&On examine I’influence d’un surfactant insoluble sur l‘ccoulement permanent thermocapillaire 
dans une cavite rectangulaire avec une surface superieure libremcnt deformable et dcs parois laterales 
chauffees differemment. Les solutions numeriques sont obtenues par une methode aux differences tinies avec 
un systtme de coordonnees curvilignes. Les resultats montrent que la convection thermocapillaire peut etre 
stdbihsee par l’addition d’un surfactant insoluble. Lorsque la concentration du surfactant augmentc 
(nombre d’elasticite plus eleve), I’instabilite oscillatoire causee par ce surfactant peut se produirc si la pentc 
de la tension superticielle devient negative. Pour des nombres de P&let eleves, la couche de concentration 
est form&e prts de la surface froide et la surface propre apparait dans la region proche de la paroi chaude. 
Un ecoulement oscillatoire peut aussi etre induit par une concentration locale trts elevee de surfactant qui 

est creee par une couche de concentration. 

THERMOKAPILLARE KONVEKTION IN EINEM RECHTECKIGEN HOHLRAUM 
UNTER DEM EINFLUSS VON OBERFLkHENVERUNREINIGUNGEN 

Zusammenfassung-In der vorliegenden Arbeit wird der EinfluR van nichtliislichen oberlhichenaktivcn 
Stoffen auf die gleichmaI3ige thermokapillare Stromung in einem rechteckigen Hohlraum mit einer defor- 
mierbaren freien Oberfliche und unterschiedlich beheizten Seitenwinden untersucht. Die numerischen 
Liisungen werden mit einem Finie-Differenzen-Verfahren zusammen mit einem obertlachenangepagten 
gekriimmten Koordinatensystem bestimmt. Die Ergebnisse zeigen, daB die thermokapillare Konvektion 
durch Zugabe eins nichtlijslichen oberflachenaktiven Stoffes stabilisiert werden kann. Weiterhin kann bei 
steigender Konzentration des oberflachenaktiven Stoffes (Hohere Elastizitats-Zahl) eine oszillatorische 
Instabilitat durch diesen oberfllchenaktiven Stoff hervorgerufen werden, wenn die Steigung der Ober- 
flichcnspannung negativ wird. Fur hihere Peclet-Zahlen bildet sich die Konzentrationsgrenzflache in der 
Nahe der kalten Wand, und die reine Oberflache erscheint nahe der heigen Wand. Oszillatorische Strii- 
mungen ktinnen such durch hohe iirtliche Konzentration des oberflachenaktiven Stoffes an einer begren- 

zenden Flache hervorgerufen werden. 

TEPMOKATIMJIJDIPHA~ KOHBEKHMIl B IIOJIOCTM ITPfiMOYI-O_JIbHOI-0 CElIEHRII 
ITOn BJIHRHMEM 3AI-Px3HEHBx I-IOBEPXHOCTM 

AmroTnms-Wccnenye-rcr anmume HepacraopuMoro IIAB Ha crauaouapuoe TepMoKanannnpuoe 
Te’IeHAe B IIOnOCTB npKMO~OnbHOr0 Ce’ieHBR C At?+OpMUpy’ZMOii CB060AHOii BepXH& IIOBepXHOCTbH, B 

,IOKa,IbHO HarpBaeMbIMH 60KOBbIMEI CTeHKaMH. %CneHHb,, pWIeHL,K ,,Ony’IeHbI C UCIIOAb30BaHHeM 

KOHe’IHO-pa3HOCTHOTO MeTOAa A KpHBOnHHei-IHOii CHCTeMbI KOOpAHHaT, CBSI3aHHOfi C rpaHHQeii. Pesynb- 

TaTbI I,OKa3bIBaEOT, ‘IT0 TepMOKa,IHnnRpHaK KOHBeKI,AIl MOmeT CTa6HJISi3HpOBaTbCK IIOCpeACTBOM 

AO6aBneHHSl HepaCTBOpHMOrO nAB, a C AaJlbHeihIIHM yBen&NeHHeM KOHIJeHTpaLlkiki nAB MOmeT BO3- 

HBKHyTb KOne6aTenbIiaK HeyCTGiiSHBOCTb, KOI-Aa HaKnOH IIOBepXHOCTHOl-0 HaTR;l(‘ZHHII CTaHOBliTCIl 

OTpEWaTenbHbIM. npH BbICOKUX SHCnaX HeKJIe B03ne HeHarpTOii CTeHKH o6pa3yeTcn KOHUeHTpaUESOH- 

Max rpaaaua, a a o6nacra y riarperoii crermri noKBnneTcK wicTaK noeepxeomb. Kone6aTenbHoe 
TeYeHAe MOxeT TaKme 06yCnOBnEfBaTbCZd BblCOKOii nOKaJIbHOi% KOHueHTpauHeii TIAB, CO3AaBaeMOfi KOH- 


