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Abstract—This study examines the influence of insoluble surfactant on the steady thermocapillary flow in
a rectangular cavity with an upper, deformable free surface and differentially heated side walls, The
numerical solutions are obtained with a finite difference method, together with a boundary-fitted curvilinear
coordinate system. The results show that the thermocapillary convection can be stabilized by the addition
of an insoluble surfactant. Furthermore, as the concentration of the surfactant increases (higher elasticity
number), oscillatory instability caused by that surfactant may occur when the slope of the surface tension
becomes negative. For higher Peclet numbers, the concentration boundary is formed near the cold wall,
and the clean surface appears in the region near the hot wall. Oscillatory flow may also be induced by a
high Jocal surfactant concentration that is created by a concentration boundary.

1. INTRODUCTION

It 1s weLL known that bulk fluid motions may be
induced by variations in surface tension at the inter-
face between two fluids. Such surface tension varia-
tions may be caused by non-uniform distributions of
surface temperature or concentration. Fluid motions
due to temperature gradients are called ‘thermo-
capillary convection’. In recent years, interest in ther-
mocapillary flows has arisen in connection with the
production of high-quality materials. The importance
of thermocapillary convection has been discussed by
Ostrach [1].

The influence of surface contamination on ther-
mocapillary convection is the subject of considerable
study. Knowledge of this effect is important in prac-
tical situations, as the characteristics of resolidified
material in a material process are usually influenced
by the transport behavior of heat, momentum, and
mass during the melting. It is difficult to analyze a
problem that involves the heat, momentum, and mass
transfer with an unknown gas-liquid interface.
Homsy and Meiburg [2] have extended the asymptotic
analysis of Shen and Davis [3] in studying the influ-
ence of surface contamination in a rectangular cavity.
They simplified 'the mass transfer problem by
assuming an insoluble surfactant absorbed at the gas—
liquid interface. Two dimensionless parameters were
introduced : a surface Peclet number Pe, which rep-
resents the ratio of the insoluble surfactant convection
to diffusion, and an elasticity number E, which indi-
cates the ratio of the variation in surface tension gen-
erated by the insoluble surfactant to that induced
by the temperature difference. They showed that the
thermocapillary convection strength is suppressed by

the addition of an insoluble surfactant, and for £ « 1
and Pe>» 1, sharp gradients in surfactant con-
centrations form near the cold wall. Carpenter and
liomsy [4] considered the thermocapillary flow in a
two-dimensional slot with the effect of a partially con-
taminated interface. They assumed that the free sur-
face was non-deformabile, and found that for Pe > 1
the region of surface stagnation depended on elasticity
number E. The results of refs. [2-4] are valid for slow
fluid motions in a shallow, two-dimensional cavity,
but because the motion of flow occurring in the
material process is very vigorous, an analysis without
consideration of the effects of strong convection may
be physically unrealistic. As mentioned by Berg and
Acrivos [5], the convective instability can be stabilized
by a surfactant. Therefore it is of interest to study
the effect of surfactants on strong thermocapillary
convection.

In order to gain further understanding of the effect
of surface contamination on thermocapillary con-
vection in a rectangular cavity, we have performed
a series of numerical computations. The numerical
technique, which is an extended version of that used
previously by Chen et al. [6, 7], has been used to solve
the non-linear governing equations. The results of
these computations will be compared with previous
asymptotic results.

2. MATHEMATICAL FORMULATION

The physical model consists of a rectangular cavity
of height H and length L containing a Newtonian fluid
of constant density p, dynamic viscosity y, kinematic
viscosity v, thermal conductivity k, and thermal diffu-
sivity a, as shown in Fig. 1. The temperatures at x" =
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NOMENCLATURE
A aspect ratio u dimensionless horizontal velocity
¢ dimensionless surface concentration v dimensionless vertical velocity
o surface concentration X dimensionless horizontal coordinate
Co average surface concentration X horizontal coordinate
¢y specific heat y dimensionless vertical coordinate
Ca  capillary number V' vertical coordinate.
D surface diffusion coefficient
E elasticity number Greek symbols
h location of the free surface 2 thermal diffusivity
H height of the cavity Yo surface concentration coefficient
L length of the cavity Ir surface tension temperature coefficient
Ma  Marangoni number U dynamic viscosity
P dimensionless pressure v kinematic viscosity
y pressure P density
Pe  Peclet number o surface tension
Pr Prandt] number g mean value of free surface
Re  Reynolds number W stream function
T dimensionless temperature W vorticity.
T temperature
T, temperature at X' = L Subscripts
T, temperature at X" = 0 x,y derivative with respect to x, y.

and x" = L are Tj, and T, respectively. The bottom
surface is thermally insulated, while the top free sur-
face is cooled by heat transfer to the gas. We assume
that the free surface is contaminated by an insoluble
surfactant. The surface tension is considered as a
monotonically decreasing function of temperature
and local surface concentration of the surfactant:

6 = 0q—yr(T" —Ty) ~73A¢"~ ) (1

where o, is the mean surface tension at reference tem-
perature T, = (T,+T7.)/2 and average surface con-
centration ¢;, and the constants y and y. represent
the rate of surface tension change with respect to
temperature and concentration, respectively.

Following Chen er al. [6}, we introduce the fol-
lowing non-dimensional variables:

x=x/H, y=y[H u=u[(yAT/w,
v="0[(prAT/w), p=p'|(wAT/H), h=W[H,
T=(T"=Ty/AT, ¢ =c'[cy, 2
a
R N s S Tt
o
Th H y'= h(x) Te
-+ ‘ : | } g\
N O ...
o
EV

F1G. 1. Schematic diagram of the physical system.

where AT = T,—T,. The dimensionless governing
equations for the steady two-dimensional motion of
the liquid are the following:

u,+v, =0 (3a)
Re(uu, +vu) = —p. -+ +u, (3b)
Re(u, +v1,) = ~p,+v,,+v,  (30)
MauT . +vT,) =T, ,+T,,. (3d)

Here, the stream function ¢ is given by:
U=, v=—y 4

and the vorticity is defined as:

W =U,—U,. (5)

The two dimensionless parameters which appear in
equations {3) are:

Reynoldsnumber, Re = yrATH/uv,

Marangoni number, Ma = RePr = y;ATH/po,

where Pr is the Prandtl number, v/a.
Eliminating the pressure from equation (3}, we
obtain:

Re('jlywx - l//xwy) = W+ Wy, (63)
Ma(dly Tr - ‘/’x T}) = Tn’ + T)‘;v (6b)
—w = U"xx + !;’yv' (60)

The appropriate boundary conditions are as follows:
llI:T‘,:O, w = “‘lﬂn; ,V=0
!p:O? @ = —‘ljv,\‘s T == 1/2* x=0 (83—-{))

(Ta—c)
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¥=0, T'=—1/2;

Y =0,
—p+2(1+h) [~ =¥, b+ B Wb+ Y,)] =
Ca 'h, (1 4+h2)~¥*(1 — CaT— ECa(c— 1)),
(A—=h)w = (1+h)"*(T +h,T,+ Ec,)
=2y (1 =h7) —4h. 4,
(1=h3)~Y(T,—T.h,) = B(T+Ax—1/2),
Cox—hho (1 =h)) " 'c. = APe(1+h?)
<[, 0) e~y chh (1 =k '] y=h(x). (10a-c)

The boundary conditions contain five dimensionless
parameters : aspect ratio A = H/L, capillary number
Ca = y:AT/o,, elasticity number E = coy./(yrAT),
surface Peclet number Pe = y;ATL/(uD) and Biot
number Bi = hH/k, where D is the surface diffusion
coefficient and 4 is the surface heat transfer coefficient.
Equation (10a) expresses the kinematic condition on
the free surface. Equations (10b)-(10d) represent
the normal and shear—stress balances and the thermal
condition. Following Levich [8], the convection of
an insoluble surfactant along the free surface is
expressed by equation (10e).

Since the liquid volume and the total surface con-
centration remain constant :

J ! h(x) dx =

1/4 1
J:) c(x)dx = E

The contact line conditions are restricted to the case
of the liquid sticking to the sharp edge at the solid end
walls,

0= -, x=1/4 (Ya—<c)

(11a)

N

(11b)

h(0) = h(1/4) = 1, (12)

and the concentration gradient is assumed to be zero
at the solid end walls,

ex(0) = c.(1/4) = 0. (13)

The finite difference scheme originally developed by
Chen er al. [6] to study thermocapillary convection in
a rectangular cavity has been modified to solve system
(6) with conditions (7)—(13). The discrete form of
the system is constructed using second-order central
differencing. The calculations are initiated by assign-
ing an initial shape to the gas-liquid interface. A boun-
dary-fitted curvilinear coordinate system [9] has been
generated that has coordinate lines that coincide with
the current boundary. Grid-stretching transformation
has been employed to provide good resolution near
the gas-liquid interface. Initial guesses for ¥, w, and
T over the entire computation domain were chosen.
The difference equation for w is solved using these
initial guesses to form the non-linear term in equation
(6a) and boundary conditions (7)—(9) and (10c). After
the new w is obtained, the difference equations for ¥
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and T are solved iteratively using the successive-line-
overrelaxation (SLOR) method. The new solutions
for i and T are used to correct the initial guesses for yr
and T, and the procedure is repeated until the relative
error of two subsequent computations is within a
specified limit, generally taken as 10, The surfactant
equation (10e) is solved using the shooting method.
Then the normal-stress condition (10b) is checked. If
that condition is not satisfied, the gas-liquid interface
is modified to reduce the difference; the complete
discussion of the search procedure for the new inter-
face shape is described in detail in ref. [6] and is
therefore not repeated here. With a new interface
shape, we repeat the solution procedure discussed
above until all equations and boundary conditions are
satisfied.

3. RESULTS AND DISCUSSION

The numerical computations described in the pre-
vious section were done on the National Central Uni-
versity VAX 8650 computer using double-precision
arithmetic. Computations were performed for cases
in which the aspect ratio was 0.2, the Prandtl number
was 10, and the Biot number was 1. The total number
of mesh points was chosen from 41 x41 to 201 x 41,
depending on the Marangoni number Ma; 41 x 41
for Ma = 10, 81 x 41 for Ma = 500, and 201 x 41 for
Ma = 5000.

The influences of the elasticity and Peclet numbers
on the surface deformation have been considered.
Figure 2 shows the free-surface shape for Ma = 10,
Pe =100, and Ca = 0.1 with different E, while Fig. 3
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F1G. 2. The interface shape for Ma = 10, Pe = 100, and

Ca = 0.1 with different E.
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3. The interface shape for Ma = 10, Pe = 0.1, and
Ca = 0.1 with different Pe.
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Fi1G. 4. The distribution of surface velocity for Ma = 500,
Pe = 1000, and Ca = 0.02 with different E.

illustrates the interface shape for Ma = 10, E = 0.1,
and Ca = 0.1 with different Pe. The amount of surface
deflection decreases as E and Pe increase. The surface
deflections for small parameters are in qualitative and
quantitative agreement with those of Homsy and
Meiburg [2].

Figures 4 and 5 illustrates the effect of the elasticity
and Peclet numbers on the surface velocity. It is clear
that the present results are consistant with those of
the asymptotic results [2] in that the surface velocity
decreases as the elasticity and Peclet numbers increase.
The influences of £ and Pe are more significant near
the cold region. In the cavity, the flow motion induced
by the temperature gradient is clockwise, where the
fluid is driven from the hot side to the cold side near
the gas-liquid interface and moves back near the bot-
tom wall [6]. The surfactant concentration near the
cold side is much richer than it is near the hot side
because the surfactant has shifted to the cold side due
to the clockwise flow motion. Hence, the magnitude
of surface velocity is more significantly reduced by the
surfactant near the cold region. For higher E, the
influence of the surfactant on the surface tension is
more significant than the temperaturc difference.
Also, the distribution of surfactant is more non-uni-
form for higher Pe (Fig. 8). These are the reasons for
the decrease of surface velocity near the cold wall for
higher £ and Pe. Based on the stability analysis of
Smith and Davis [10, 11}, it is to be expected that
unsteady thermocapillary motions will occur above

0.08
0.04 + Pe=250
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Pe=500
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FiG. 5. The distribution of surface velocity for Ma = 500,
E = 0.01, and Ca = 0.02 with different Pe.
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Fi1G. 6. The distribution of surfactant concentration for
Ma = 10, Pe = 100, and Ca = 0.1 with different E.

some critical Ma. As mentioned by Zebib ez al. [12],
the peak velocity near the cold region is the major
cause for the instability of thermocapillary convec-
tion. One may conjecture that the thermocapillary
flow is stabilized by the addition of an absolute sur-
factant.

Figure 6 shows the influence of £ on the surfactant
concentration. For smaller E, the surface tension
gradient is mainly induced by the temperature gradi-
ent. The high local concentration is formed near the
cold region resulting from the convection effect due
to thermocapillary flow motion. The local surface ten-
sion strength decreases as the concentration of insol-
uble surfactant increases because the shear stress
caused by the concentration is in opposition to the
thermocapillary stress. Therefore, increasing F results
in a reduction of the convection effect due to ther-
mocapillary flow motion. This is the reason why the
surfactant concentration is more uniform for higher
E. Figure 7 illustrates the distribution of surface ten-
sion gradient for Ma = 10, Pe = 100, and Cu = 0.1
with different E. From Fig. 5, it is clear that the surface
tension gradient decreases with increasing E,
especially for the region near the cold wall. For
FE = 0.1333, the surface tension gradient at x = 4.5 is
almost zero. When E > 0.14, it is obvious that a nega-
tive surface tension gradient may appear. In our com-
putations, a convergent solution cannot be obtained
beyond this value, possibly because the surface ten-
sion gradient near the cold wall oscillates from the

0.025
]

0.020+

0.015

ay(x)

0.010+

Fig. 7. The distribution of surface tension gradient for
Ma = 10, Pe = 100, and Ca = 0.1 with different E.
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negative value to the positive value. When the negative
surface tension gradient occurs, a stagnant point is
formed at the free surface and the flow motion in
the cavity is separated into two regions: a clockwise
motion near the hot wall and an anti-clockwise
motion near the cold wall. The negative surface ten-
sion gradient will change to the positive value because
the anti-clockwise flow motion will drive the insoluble
surfactant from the low temperature region to the
high temperature region. The positive surface tension
gradient will switch back to the negative value due to
the clockwise flow motion. Therefore, an oscillatory
motion may be established when E is greater than
this critical value. This implies that the zero surface
tension gradient could be the criterion for the onset
of the oscillatory instability caused by the insoluble
surfactant. Of course, this must be verified by further
experiments and stability studics. The critical elas-
ticity number decreases with increasing Ma, Pe and
Ca. For Ma = 5000 and Pe = 1000, the critical elas-
ticity number is around 0.006.

Figure 8 shows the effect of Pe on the surface con-
centration. From Fig. 8, we can see that the surface
concentration is nearly constant for Pe = 10, and the
concentration boundary layer is formed near the cold
wall with further increases in Pe. When Pe exceeds a
certain critical value, the clean surface appears in the
region near the hot wall. The extent of the clean sur-
face increases with continuous increases in Pe. We
choose to define the clean length x, as the length of
the surface where ¢(x) < 0.01. Figure 9 demonstrates
that for a fixed Pe, x, increases with increasing Re,
and for a fixed Ma, x, increases exponentially for
smaller Pe and asymptotically for higher Pe. In Fig.
9, a convergent solution will not be obtained when
x. > 4.1 for Ma = 100 and x, > 4.25 for Ma = 5000.
This may be caused by the appearance of a negative
surface tension gradient resulting from a high local
surfactant concentration near the cold region. There-
fore, the transient flow motion may be generated by
the strong surfactant convection.

4. CONCLUSION

Numerical computations have been performed to
study the influence of an insoluble surfactant on the
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Fig. 8. The distribution of surface concentration for
Ma = 10, E = 0.01, and Ca = 0.1 with different Pe.
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FiG. 9. Clean length x_ vs Pe for £ = 0.005 and Ca = 0.001
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thermocapillary convection in a rectangular cavity.
The results show that the thermocapillary flow may
be stabilized by the addition of an insoluble
surfactant. The strength of the thermocapillary flow
is reduced with increasing £ or Pe. With further
increases in E or Pe, oscillatory flow may occur due to
the appearance of a negative surface tension gradient
caused by the insoluble surfactant. The magnitude of
the critical elasticity number decreases with increasing
Ma, Pe and Ca. The clean surface forms the region
near the hot wall when Pe exceeds a certain critical
value, and the region of clean surface increases when
Re increases.
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CONVECTION THERMOCAPILLAIRE DANS UNE CAVITE RECTANGULAIRE SOUS
L'INFLUENCE DE LA CONTAMINATION DE LA SURFACE

Résumé—On examine 'influence d'un surfactant insoluble sur I'écoulement permanent thermocapillaire
dans une cavité rectangulaire avec une surface supéricurc librement déformable et des parois latérales
chauffées différemment. Les solutions numériques sont obtenues par une méthode aux différences finies avec
un systéme de coordonnées curvilignes. Les résultats montrent que la convection thermocapillaire peut étre
stabilisée par ’addition d’un surfactant insoluble. Lorsque la concentration du surfactant augmentc
(nombre d’¢élasticité plus élevé), l'instabilité oscillatoire causée par ce surfactant peut se produire si la pente
de la tension superficielle devient négative. Pour des nombres de Péclet élevés, la couche de concentration
est formée prés de la surface froide et la surface propre apparait dans la région proche de la paroi chaude.
Un écoulement oscillatoire peut aussi étre induit par une concentration locale tres élevée de surfactant qui
est créée par une couche de concentration.

THERMOKAPILLARE KONVEKTION IN EINEM RECHTECKIGEN HOHLRAUM
UNTER DEM EINFLUSS VON OBERFLACHENVERUNREINIGUNGEN

Zusammenfassung—In der vorliegenden Arbeit wird der EinfluB von nichtloslichen oberflichenaktiven
Stoffen auf die gleichméiBige thermokapillare Strdmung in einem rechteckigen Hohlraum mit einer defor-
mierbaren freien Oberfliche und unterschiedlich beheizten Seitenwinden untersucht. Die numerischen
Losungen werden mit einem Finie-Differenzen-Verfahren zusammen mit einem oberflichenangepaBten
gekriimmten Koordinatensystem bestimmt. Die Ergebnisse zeigen, dall die thermokapillare Konvektion
durch Zugabe eins nichtléslichen oberflichenaktiven Stoffes stabilisiert werden kann. Weiterhin kann bei
steigender Konzentration des oberflichenaktiven Stoffes (Hoéhere Elastizitdts-Zahl) eine oszillatorische
Instabilitdt durch diesen oberflichenaktiven Stoff hervorgerufen werden, wenn die Steigung der Ober-
flichenspannung negativ wird. Fiir hohere Peclet-Zahlen bildet sich die Konzentrationsgrenzfliche in der
Nihe der kalten Wand, und die reine Oberfliche erscheint nahe der heiBen Wand. Oszillatorische Stro-
mungen konnen auch durch hohe értliche Konzentration des oberflichenaktiven Stoffes an einer begren-
zenden Fliache hervorgerufen werden.

TEPMOKAITHJIJIAPHA S KOHBEKLIMA B ITOJIOCTH IMPAMOYI'OJIBHOI'O CEUEHUSA
noa BJIMAHHUEM 3ATPAZHEHWA IMTOBEPXHOCTH

Annoramms—MHccrnenyercs BiausHMe HepacTBopuMmoro ITAB Ha crauMoHapHOE TEPMOKANMILIAPHOE
TeYeHHEe B MOJIOCTH NMPAMOYTONBLHOrO cedeHns ¢ aeopMupyeMoii cBOGONHOH BepXHEH MOBEPXHOCTHIO H
JIOKAJIbHO HAarpeBacMbIMH OOKOBHIMH CTEHKaMH. UHC/ICHHBIE peIUeHHs MOJIYYEHBI C HCIONb30BAHHEM
KOHEYHO-Pa3HOCTHOI'O METOAA M KPHUBOJIHHEHHON CHCTEMBI KOOPANHAT, CBA3AHHOM ¢ rpaHuuei. Pesynn-
TaThl NOKa3bIBAIOT, YTO TEPMOKAMMJUIADHAsA KOHBEKUHS MOXET CTaGHIM3HPOBATECA MOCPEACTBOM
nobasneHus HepactBopuMoro ITAB, a ¢ ganbHeluuM yBenwueHueM koHueHTpauuu [TAB moxeT Boa-
HUKHYTb KoJjiebaTesbHas HeyCTGHYMBOCTB, KOIZa HAKJIOH TOBEPXHOCTHOTO HATSDKEHHS CTaAHOBMUTCH
orpuuatenbHbM. [Ipu Beicoxux umciax Ilexie Bo3iie HeHarpeToll CTEHKH 06pasyeTcs KOHUEHTpalUKOH-
Has rpaHdia, a B oOAaCTH y HArpeTodl CTEHKH INOSBIAETCS 4MCTas noBepxHOcTh. Konebatenbhoe
TeyeHHe MOXET Takxke 00ycIoBIMBAaTLCS BHICOKOH JIOKaIbHOMU koHuenrpauunei [TAB, coznasaemoit kon-
HEHTPAUMOHHOM rpasmLeH.



